Asymptotic properties of path integral ideals.
نویسندگان
چکیده
We introduce and analyze an interesting quantity, the path integral ideal, governing the flow of generic discrete theories to the continuum limit and greatly increasing their convergence. The said flow is classified according to the degree of divergence of the potential at spatial infinity. Studying the asymptotic behavior of path integral ideals we isolate the dominant terms in the effective potential that determine the behavior of a generic theory for large discrete time steps.
منابع مشابه
Asymptotic behaviour of associated primes of monomial ideals with combinatorial applications
Let $R$ be a commutative Noetherian ring and $I$ be an ideal of $R$. We say that $I$ satisfies the persistence property if $mathrm{Ass}_R(R/I^k)subseteq mathrm{Ass}_R(R/I^{k+1})$ for all positive integers $kgeq 1$, which $mathrm{Ass}_R(R/I)$ denotes the set of associated prime ideals of $I$. In this paper, we introduce a class of square-free monomial ideals in the polynomial ring $R=K[x_1,ld...
متن کاملThe asymptotic convergence rates of Fourier path integralmethodsMaria
The asymptotic rates of convergence of thermodynamic properties with respect to the number of Fourier coeecients, k max , included in Fourier path integral calculations are derived. The convergence rates are developed both with and without partial averaging for operators diagonal in coordinate representation and for the energy. Properties in the primitive Fourier method are shown to converge as...
متن کاملStress Intensity Factor Determination in Functionally Graded Materials, Considering Continuously Varying of Material Properties
In this paper, the plates made of functionally graded material (FGM) with and without a crack are numerically simulated, employing the finite element method (FEM). The material property variations are defined to be fully continuous; therefore, the elements can be as small as required. For this purpose, variations of the material properties are applied in both the integration points and in the n...
متن کاملTopics on the Ratliff-Rush Closure of an Ideal
Introduction Let be a Noetherian ring with unity and be a regular ideal of , that is, contains a nonzerodivisor. Let . Then . The :union: of this family, , is an interesting ideal first studied by Ratliff and Rush in [15]. The Ratliff-Rush closure of is defined by . A regular ideal for which is called Ratliff-Rush ideal. The present paper, reviews some of the known prop...
متن کاملMixed Segre Numbers and Integral Closure of Ideals
We introduce mixed Segre numbers of ideals which generalize the notion of mixed multiplicities of ideals of finite colength and show how many results on mixed multiplicities can be extended to results on mixed Segre numbers. In particular, we give a necessary and sufficient condition in terms of these numbers for two ideals to have the same integral closure. Also, our theory yields a new proof ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 72 3 Pt 2 شماره
صفحات -
تاریخ انتشار 2005